Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction.

نویسندگان

  • R H Kramer
  • E Molokanova
چکیده

Cyclic-nucleotide-gated (CNG) channels are crucial for sensory transduction in the photoreceptors (rods and cones) of the vertebrate retina. Light triggers a decrease in the cytoplasmic concentration of cyclic GMP in the outer segments of these cells, leading to closure of CNG channels and hyperpolarization of the membrane potential. Hence, CNG channels translate a chemical change in cyclic nucleotide concentration into an electrical signal that can spread through the photoreceptor cell and be transmitted to the rest of the visual system. The sensitivity of phototransduction can be altered by exposing the cells to light, through adaptation processes intrinsic to photoreceptors. Intracellular Ca(2+) is a major signal in light adaptation and, in conjunction with Ca(2+)-binding proteins, one of its targets for modulation is the CNG channel itself. However, other intracellular signals may be involved in the fine-tuning of light sensitivity in response to cues internal to organisms. Several intracellular signals are candidates for mediating changes in cyclic GMP sensitivity including transition metals, such as Ni(2+) and Zn(2+), and lipid metabolites, such as diacylglycerol. Moreover, CNG channels are associated with protein kinases and phosphatases that catalyze changes in phosphorylation state and allosterically modulate channel activity. Recent studies suggest that the effects of circadian rhythms and retinal transmitters on CNG channels may be mediated by such changes in phosphorylation. The goal of this paper is to review the molecular mechanisms underlying modulation of CNG channels and to relate these forms of modulation to the regulation of light sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

Activity-dependent modulation of rod photoreceptor cyclic nucleotide-gated channels mediated by phosphorylation of a specific tyrosine residue.

Cyclic nucleotide-gated (CNG) channels are crucial for phototransduction in vertebrate rod photoreceptors. The cGMP sensitivity of these channels is modulated by diffusible intracellular messengers, including Ca2+/calmodulin, contributing to negative feedback during sensory adaptation. Membrane-associated protein tyrosine kinases and phosphatases also modulate rod CNG channels, but whether this...

متن کامل

The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway.

The evolutionary histories of complex traits are complicated because such traits are comprised of multiple integrated and interacting components, which may have different individual histories. Phylogenetic studies of complex trait evolution often do not take this into account, instead focusing only on the history of whole, integrated traits; for example, mapping eyes as simply present or absent...

متن کامل

Growth factors regulate phototransduction in retinal rods by modulating cyclic nucleotide-gated channels through dephosphorylation of a specific tyrosine residue.

Illumination of vertebrate rod photoreceptors leads to a decrease in the cytoplasmic cGMP concentration and closure of cyclic nucleotide-gated (CNG) channels. Except for Ca(2+), which plays a negative feedback role in adaptation, and 11-cis-retinal, supplied by the retinal pigment epithelium, all of the biochemical machinery of phototransduction is thought to be contained within rod outer segme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 204 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2001